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ABSTRACT j
We consider the nonlinear Volterra integrodifferential equation

14 f a(t-s) () - y(s))ds - f(t)ya

-oo y2 (s)

N u
where a(u) = Kie , 0 < a < 3, and f: +3R is a given function.

i=l12

We study the existence of solutions and their asymptotic behavior as t - ,

for certain classes of functions f. The main result is that for each f 4

g lim e-f(t) =0 forsome a>0 and f(t)=0 for t> tO

there exists a unique solution y(t) satisfying lim y (t) = 1. Moreover,
t

lim y(t) exists. This holds both for 1 > 0 and
t -*

=0. It is further shown that the condition f(t) = 0 for t -a t 0  can

not be replaced by exponential decrease unless f is small or a = 1.
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SIGNIFICANCE AND EXPLANATION

The equation describes the evolution of the shape of a filament or a

sheet of a polymeric liquid subjected to an external force f(t). y denotes

the length of the filament or the thickness of the sheet respectively, and

U is a viscosity constant which can either be positive or zero. The

exponent a depends on the physical situation that is being considered.

f 2f

y

-f 
12

Jr

-f 1

We consider the length at t = - as known and investigate the evolution.

It is shown that for a physically realistic class of functions f there

exists a unique solution, and that the length approaches a new stationary

value at t = (which is in general different from the value at t =

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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EVOLUTION OF THE SHAPE OF A POLYMER SUBJECTED TO A FORCE

M. Renardy

1. INTRODUCTION

In [1] Lodge, Mc Leod and Nohel have studied the history value problem

for the nonlinear Volterra integrodifferential equation

t
f(t) f a(t-s) F(y(t),y(s))ds

-OD

This equation arises as a mathematical model for the stretching of a filament

or a sheet of a molten polymer which is assumed to be spatially homogeneous.

In this case y denotes the length of the polymer, p is a parameter

related to the viscosity,

3
F(y,z) =

- - - z2
z

and

N -A.u

a(u) = K.e
i=l1

with certain positive constants Ki  and X.. It was assumed in (1] that,1 1

for t <- 0, y(t) = g(t) was given, g(--) = 1, and g nondecreasing. A

general class of functions a and F, which includes those mentioned, was

considered. One of the results of [1] is that under these conditions the

history value problem has a unique solution, which is nonincreasing for

t ? 0, and approaches a constant strictly greater than 1 as t - =.

This paper deals with a closely related problem. We consider the elongation

of a polymer satisfying the same constitutive law, but rather than pre-

scribing the length history we prescribe the force acting on the polymer,

which causes the elongation, and consider only the length at t = -m as

known. Unlike [1], we explicitly use the form of F and a as given above.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and

the Deutsche Forschungsgemeinschaft.
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It can be derived (for an explanation of the physical principles see [2])

that the elongation of the polymer is now described by the equation

t3
f a(t-s) y(2t y(s))ds - f(t)y(

-C y2(s)

The exponent a depends on the physical situation. One case of interest

is that of a filament pulled at its ends

f F -
y >1

In this case a = 2. Another physically interesting situation is a sheet

of polymer pulled in two directions.

-f -=f

-f

1
In this case y denotes the thickness of the sheet and a = . Our analysis

holds in general for 0 < 0 < 3. The main result we are going to prove is

that for each f satisfying lim e-Otf(t) = 0 for some a > 0 there
t *- -

exists a unique solution of the equation satisfying t lim y(t) = 1.

(Theorem 3.1.). Moreover, if f = 0 for t greater than some to <

then this solution approaches a constant as t + . Counterexamples show

that this last condition on f cannot be replaced by exponential decrease

as t + + except for small f (Theorem 2.4.).

-2-
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2. SOIWJTIONS FOR SMALL FORCES
N -A.u

Let us consider equation (1.1), where 0 < a < 3, a(u) = [ Kie
i=l

and p > 0. This equation can be reduced to a system of ODE's in the follow-

ing way. We put

t -A. (t-s)

gi(t) = 1 Kie i 1-S) ds
-C y (S)

t -A. (t-s)
hi (t) = f K.e 1 y(s)ds

Then (1.1.) reads

N N 3 a
)h (giy - h) - f(t

i=l

K
i - (2.1.)

y

h -. h. i + Kiy

h2 hi
If we put Yi = giy ' 6i = - ' we obtain

N
-h (Yi- 6.) y - f(t)y

1 Y -iy. + K.- 2y (y -6) + f(ty -  (2.2.

6. -- -Ai6 + K. + 16 i(Y. - 6.) - f if(t)y'-i
i3

Both forms (2.1.) and (2.2.) will be used in the following. Clearly, if
K.

f 0, we have the stationary solution y 1, gi hi = Yi = 6
1

--- 3-



LEMMA 2.1 The linearization of (2.1) (or (2.2) at the stationary solution
K.

y = 1, gi = h. = _. has zero as a simple eigenvalue. All the other eigen-

values have negative real parts.

PROOF: Clearly, (2.1) and (2.2) give the same eigenvalues. Let us consider

(2.1). We obtain the following matrix of the linearization

N 3K. __ 11 1

-2K -A 1  0 0. 0 0. . . 0

-2K2  0 -.2. 0 0 0. . 0

-2K 0 0 . . n 0 0. . 0

K 0 0 . .. 0 -x . 0

K2 0 0 . . . 0 0-X. . 0

KN 0 0 . .. 0 0 0 n

This yields the characteristic polynominal.

3K. 3K.

P =IT_ . X 2(_y _X- y 1j I i 1A i " )j( X X

1 1 1

Thus N eigenvalues are given by X = -Xi  the remaining N + 1 eigen-

values are the zeros of the last factor. Obviously one of these is zero,

and it is simple. It remains to be proved that all the remaining solutions

have negative real parts. Assume the contrary, i.e. ReA > 0, X 0 and

3K, 3K.
Z~~x. 14(-A.-A) =

P i i

-4-

, .



When we take the real part, this implies

3K. 3K. (X.+ReX)
- --- RE + Z= 0lA. + im)2

i 1 i I (X i+ReX)2  + (Im ) 2

It is, however, easy to see that the left hand side is strictly negative,

whence we have a contradiction.

n nLet C n denote the space of all T-periodic C -functions IR -3R. The

following lemma holds:

LEMMA 2.2 if f (t) Cn has sufficiently small norm, then there exists a0 T _n+l. 2N+I

one-parameter of constants C and functions Y = (y,yi S E (C nuT )
ii T

such that Y satisfies equation (2.2) with f = f0 - C.

PROOF: Obviously (2.2) with f = f0 - C can be written in the form

G(Y,c,f O ) = 0, where G is a smooth function mapping a neighborhood of
0 K. K.y.- ' 1 n+l 2N+l n n 2N+l
Y0 c = 0, f0 =0 in (C ) xmR C into (C)

00T T T

It is a straightforward consequence of lemma 2.1 that the Frechet derivative

D yG(Y 00,0) has a one-dimensional kernel and its range has codimension 1.

Moreover, one easily sees from (2.2) that DcG(Y0,0,0) is not in the range

of D yG(Y 00,0), i.e. D (yc)G(Y.,0,0) is onto and has a one-dimensional

kernel. The lemma now follows from the implicit function theorem.

DEFINITION 2.3 Let X = {f E Cn OR, 3R) I lim eaItIf (k ) (t) = 0 for k 0,1,... ,n}
n It l -

a?

A natural norm in X is
n

II fl X sup le f k) (t) I
k=0 t eR

Moreover, let Y = (f e Cn(R, JR)I lim eltlf(k ) (t) 0 for k 1,...,n,
n It +

lim e-°tf(t) = 01

-5-



A natural norm in Y is

nn

II fII= sup lea tf (k)(t)I + sup leatf(t)I + supIe' (f(t) fk=-i t EMR t<0 t>O

+ If(-) I

Theorem 2.4 Let again Y denote (y,y1 ,y2 ,... ,yS6l,...6n ) and
K. K.

Y0 = (1, x x Let a > 0 be small enough (smaller than all the real parts
1 1

of the non-zero eigenvalues of the linearization). Then the following holds:

If f E XF has sufficiently small norm, then (2.2) has a solution Yn
2Nsatisfying Y - Y n+l n( ) . Y depends smoothly on f.

PROOF: When we put Y - Y0 = Z, equation (2.2) can be written in the form
yc a 2N) a

G(Z,f) = 0, and G is a smooth mapping of (Y nY x (X +i) ) x X i
n+l n+l n to

(X) 2N+. Moreover, it can easily be concluded from lemma 2.1 that then

linearization DzG(0,O) is an isomorphism. The implicit function theorem

implies the result.

i -6-
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3. GLOBAL BEHAVIOUR OF SOLUTIONS FOR LARGE f

THEOREM 3.1 Let f: R -R be continuous and such that lim e- atf(t) = 0
t ).

(a>0 small enough), f(t) - 0 for t > t For every such f, equation (2.2)
K.

has a unique solution satisfying lir y(t) = 1, lir Y r = li "
t1 -C t) -w t. -C i

This solution exists globally for all times t and lim y(t) exists and

is strictly greater that zero.

PROOF: If tI is chosen large enough, e-Otf(t) becomes small on (-oo, -t )

and one can use an implicit function argument analogous to theorem 2.4 to

prove the existence of a solution on (--, -t1 ). This solution is unique in

the class of solutions approaching the limiting values at t = -- at a
at

rate of e . However, if a solution tends to these limits at all, it can

be seen from the last two equations of (2.2) and the implicit function

theorem that y and 6. tend to their limiting values at a rate of

at
e . The first equation then implies that y approaches its limiting

value at the same rate. Hence the solution is actually unique in the

class of all solutions approaching the prescribed limits at t -= as

claimed in the theorem.

We now continue this solution to the right, and we have to make sure

that it does not blow up in a finite time. For that purpose it is more

convenient to consider (2.1) rather that (2.2). From the second and

third equation we see that as long as y stays positive, gi and h.

have a positive lower bound for all finite times, which is independent of

y. Hence, if y becomes too large, giy 3 will dominate over fya and

also over hi  (since this is less than some constant times max y (T)).
3.(-w,t]

Analogously, if y becomes too small, h. will dominate over fy a and

3
giy . Hence y cannot go to zero or infinity in finite time, whence we

find global existence.

-7-
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Let now t > t O  Then f = 0, and using (2.2) again, we find

il 2 K. Ki

a1

N A 1 a.22
N2 2

SK. + X -K (a. - (3.1)
= 2 K1 + j K.i' - 1i . +--8 +_!

1 1

K. K.1 1

Here we have put a. yi 8 : -. . As we know that Y. and
1 1 i i i1

K. K.

S. stay positive, the denominators a. + + are always positive,,. 8i  r lay oiie
1 1

and the left side of the equation (3.1) is thus the derivative of a positive

definite function that decreases along trajectories. As an immediate

consequence we obtain that a. and 8. tend to o exponentially for

t . One easily concludes from (2.2) that y approaches a constant.

COROLLARY 3.2 If f is always non-negative and not identically zero, then

y(-) > y(-=), if f is always non-positive and not identically zero, then

y(-) < y(--).

PROOF: Assume f > 0, the other case is analogous. It is immediate from

the integral equation (1.1) that f > 0 implies y > 1 for all t.

Moreover, if f # 0, there must be some t* such that y(t*) > 1.

Let now z(t) = min y(T). Then (1.1) implies that
T E [t*,t]

da ~t*3
) min (0,- 1 a(t-s) (z (t)-l)ds)

t*3_)f a (t-s) (z (t)-1)

If z(t) - 1 is sufficiently small, this gives an inequality having the

formL-8-



zFdt ) - kt

It follows immediately that t ir z(t) > 1.

We conclude this chapter with an argument showing that theorem 3.1

does not hold, if the condition that f(t) = 0 for t > t 0  is replaced

by exponential decrease of f and a # 1 (in case a = 1 the previous
N

argument still goes through, the only difference being that f(t) N(iargumenti=l1

has to be added on the right side of (3.1)). We restrict ourselves to the

case N = 1. Now (2.1) reads:

3
- j = gy - h - f(t)y

- -Xg + K
y

- -Xh + Ky

We now solve these equations for t -> 0 by the following ansatz:

Vt -2vt -At Vt -At,
y=y 0 e , g = g0e + g1 e , = he +h e

(l-a)vt 3-ae ((3-a)v-X)t -e (-av-A)tf =foe + gly 0  e - hlY 0  e

After some calculation one finds that this satisfies the equations if

Kygo h 0 and
2 ' 0 + vY (X-2v)

a-. 3vK + pv(A-2v) (A+v)

(A-2v) (A+v)

We thus find solutions where f goes to zero exponentially, but y +

for a > 1 and y - 0 for a < 1.

All we have to make sure is that by appropriate continuation for t < 0

we can match the conditions at t =-w. For this purpose continue y in

an arbitrary way to the left such that y is smooth and approaches I

-9-



exponentially at t -=. The equations for g and h respectively then

have unique solutions approaching K for t - . These solutions can be

matched to the solutions for t > 0 by appropriate choice of g, and hl.

Finally f is determined by the first equation.

-10-



4. THE CASE =0

In this case the first equation of (2.1) becomes

3.N N
y3  g,- hi - f(t)yX =0.

i=l i=l

PROPOSITION 4.1 For any g > 0, h > 0 and 0 < a < 3 the equation

3 a
F(y) = gy - h - fy 0 has a unique solution in (0,-).

PROOF: We have F(0) < 0, lir F(y) > 0, so there is clearly a positive
y-4

solution. To show it is unique, we investigate zeros of F'(y). We have

F'(y) 3gy 2 _ cfya-l. If y >0 and F'(y) =0, we find

1 ( (y) + y 3)-yF y(1 - -)g - h < 0. This means F cannot have a positive

maximum, whence the result.

The solution y(g,h,f) can then be inserted into the other equations,

yielding a system of 2N equations. K

THEOREM 4.1 The same statement as in theorem 3.1 holds also for P = 0.

Also, Corollary 3.2 still holds.

SKETCH OF THE PROOF: The existence of a solution on (-w,-t 1 ) and global

existence in time are proved in the same manner as before, and we do not

repeat the arguments. If f = 0, one now finds from (2.2)

-X + K. + 2

i iyi i y

-X.6. + K. - 6i

This leads to

2  2

I 1 ai + L + +N
K.K2i~ K. KJ y

. iX

where ai  and 8. are defined as before.

Since Zc(ai - is now equal to zero, we still find that a. and 8
i

approach 0 exponentially, whence the result.

-11-



For the corollary, observe that

2 t 1 t I 3 ( t )
i(t) - 3y2 (t) f a(t-s) 2-1 = - f a?(t-s) 2Y- - Y(s) ds

-0 y (s) -0 y2 (s)

Using this, one can apply an argument analogous to the previous one.
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